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and a Theorem of P61ya

G. CHANG* AND J. HOSCHEK

Department of Mathematics, Technische Hochschule Darmstadt,
6100 Darmstadt, West Germany

Communicated by Charles K. Chui

Received June 16, 1987

This paper is concerned with Bernstein ·Bezier triangular patches and their Bezier
nets. By degree raising, a sequence of Bezier nets is obtained. It is known that the
sequence converges uniformly to the Bernstein Bezier triangular patch determined
by those nets. A new proof of the convergence, which is more geometric and con­
structive, is presented. Connections of convergence and a theorem due to P61ya are
revealed. Extensions to higher dimensional cases are also mentioned. '/;. 198Y
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1. INTRODUCTIO~

Let T be a given triangle. Each point P in T has barycentric coordinates
(u, v, 11') with respect to T. The triple (u, v, w) satisfies the conditions

u~O, v~o,

u+u+w=l.

w~O,
(I)

We identify P and its barycentric coordinates by writing P = (u, v, IV). Let
n be any positive integer.

The subdivision of T into n2 congruent triangles with vertices at (ifn, Jln,
kin), in which i+ i+k=n, denoted by Sn(T), is called the nth subdivision
of T. The points (ifn, iln, kin), i + i + k = n, are called nodes of Sn( T).
S4( T) is illustrated in Fig. 1.

Given is a set f of (n + l)(n + 2)/2 real numhers, i.e., f := {/;..i.k j i +
.i + k = n}, and the polynomial

n'B//(.l; p) := " .r.. --'- u'v.iWk
L- I.j.k ., ., k'

i-t.i,k~n I.J..
(2)
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FIG. I. S4( n with its nodes.

is defined as the Bernstein-Bezier (B-B) polynomial of f over the triangle
T. fi.J,k(i + j + k = n) are called the Bezier ordinates of Bn(j; p) while (iln,
jln, kin; fi,J,d are called its Bezier points. The point set (P; Bn(j; p)) with
pE T forms a surface patch over triangle T. We simply call polynomial (2)
the B-B triangular patch with domain triangle T. The piecewise linear func­
tion J( p) which is linear on each subtriangle of Sn( T) and interpolates to
/;,J.k at (iln, jln, kin), is said to be the Bezier net of patch (2). Figure 2
illustrates a Bezier net and the corresponding patch (with n = 3).

It is known [3J that if we set

1 . . .
EI"· 'k :=-- (if, I 'k + 1;1"·, I k+ k"k 1):It,I, n+ 1 t·· ,I. ,!It,I-. Jt,l. ,. ,

where i+ j+k=n+ t, and write

Ef := {E/;,J,k Ii + j + k = n },

(3)

b

FIG. 2. Bezier net and the corresponding patch (n = 3).



then we have
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This means that it is always possible to write Bn(f; p) as a B-B polynomial
of degree n + 1. The technique just mentioned is called degree raising. The
Bezier net associated with Ef is denoted by EJ( p) which is linear on each
subtriangle of SrI + 1(T) and interpolates E/;.i.k at (i/(n + 1), )/(n + 1).
k/(n + 1)).

If one repeats the process of degree raising, a sequence of Bezier nets
J( p), EJ( p), £2J( p), ..., will be obtained. It has been proved that

Theorem I [3]. We have

(4)

uniformly on T.

Recently we found that Theorem I has a very close connection with a
famous theorem, which appeared in the carly stage of this century [6], in
the algebraic theory of polynomials in several variables. For historical
remarks, see [5]. To present P6lya's theorem we need some definitions. A
real form is a homogeneous polynomial F(x I' X 2, ..., x m ), with real coef­
ficients, in m variables. A form is said to be strictly positive, in a certain
region of the variables, if F> 0 for all points in that region.

THEOREM 2 (P6Iya). If the form F(x t , x 2, ..., x m ) is strictly positive in
the region

and

then F may be expressed as

G
F=­

H'
(5)

where G and H are forms with positive coefficients. In particular, we may
suppose that

for a suitable natural number p.
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In the present paper, we first show that Theorem 2 can be derived from
Theorem 1, and then point out that P6lya's technique for the proof of
his theorem, with further modifications, in turn provides a proof for
Theorem 1 which is more geometric and constructive than existing ones.

2. PROOF OF THEOREM

For simplicity of writing we suppose m = 3. No new point of principle
arises for general m.

A form F in three variables u, v, w can be expressed by

D( ) ~ {' n! " {J y
r' U, V, W = L. J",{J,y~f3"u v w,

,,+{J+y=n 0(.. y.
(6)

in which u, v, ware independent. If F>°in the region u ~ 0, v ~ 0, w~°
and u + v + w > 0, then F has a positive minimum, say T, in the region
u ~ 0, v ~ 0, w~°and u + v + w = 1. In this case (6) becomes a B-B poly­
nomial on the triangle T.

An elementary manipulation brings the following identity

m!n!
(u+v+w)mF= ( + )' L L h,j,k

m n. a+b+c=m+n i+j+k=n

x (a)(b)(C) (a+b+c)! abc. . k I b l , u V W.
I ] a. . c.

(7)

For a proof, see [5,8]. If (u, v, w) E T, i.e., u + v + w = 1, then (7) can be
viewed as the mth degree raising of the B-B polynomial Bn(f; p). Hence we
have

Emfi,j,k= (:~n~)! e<+{J~y=n f",{J,y G)(~)(~)'
in which i+ j+k=m+n.

By Farin's theorem, the inequality

holds for all P in T and for sufficiently large m. Particularly,

Emf, -EmJ(_i j k_) >0
i,j,k- m+n' m+n' m+n

(8)

(9)
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for i +.i + k = m + n. We denote the form in the right-hand side of (7)
by Gm' Equation (9) shows that all coefficients of Gm are positive for
sufficiently large m. Identity (7) gives

Gm(u, v, w)
F( u v w) = ----::~-----.:.-~

" (u+ v + w)m

which is the desired representation for sufficiently large m.
The strict positivity of B-B polynomials was characterized by Zhou [8].

Obviously he was not aware of Theorem 2.

3. AN ALTERNATE PROOF OF THEOREM

There are several proofs for the theorem. The original proof [3] is very
short but some sophisticated results by Stancu are involved. The proof
given by Zhou ([8]; see also [4]) is relatively elementary but it does not
provide a proof for the uniform convergence. For other proofs the reader
is referred to [I, 7] in which the structure of Bezier nets has been carefully
studied.

We define for real x and nonnegative i the usual binomial coefficient C)
as

(~) = I,

(
X) = x(x - 1) ... (x - i + I)
. 'f '1 I.

i = 1,2,3, ....

Consider the following polynomial of degree n:

. (nu)(nv)(nw)Ln(f;p)= L f,.fl,;· C( f3 ,,'
, I fl l"l ~ n {

It is easy to verify that

(10)

I i.i k)
Lnlf;-,-,- =.f,.j,k'\ nnn i +.i + k = n.

This means that (10) is the Lagrange interpolation to j(p) at all nodes of
Sn( T).

In particular, if f"fI,;'= I for all C(+!J+}'=n, from (10) we have the
following identity,

L (nu)(nv)(nw)
, t.{J+l~n C( f3 "l = I,



252 CHANG AND HOSCHEK

for u + v + w = 1 and n = 1,2,3, .... In general, we have

L (a)(b)(C) = (a + b + C).
a:+p+/-"n a fJ y n

(11)

The Lagrange interpolation to £mJ(p) at all nodes of Smt-n(T), by (10)
and (8), is

in which A :=(m+n)u, B:=(m+n)v, C:=(m+n)w. It is clear that

and by (11) that

(A- i)(B- j)(C - k)
a:+p+~"m+n a-i fJ-j r- k =1,

as

A - i+ B- j+ C-k = (A + B+ C) - U+ j+k)=m +n-n =m

and

a - i + {J - j + }' - k = m + n - n = m.

Hence (12) becomes

m!n! . " .. {, ((m+n)u)((m+n)v)((m+n)w).
(m+n)! i+j~~n' I,j,k i j k (13)

Define

(
Ul I)(vt-I)(wt-I)cp(u,v,w;t):=n!ln. L fi,j,k i' ,

I+j+k=n } k

We can verify that (13) is equal to

AmCfJ (u, v, w; _1_),
m+n

0~1~1.

(14 )

(15)
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where

•._ (m+nt
I ... m ·- ,

(m+ l)(m+2)···(m+n)

m= I, 2, 3, .... It is obvious that lim <pep; t)=F(p), as
t~O

t i (ut.
1
)=U(U-t)(U-2t).; .. (U-U- I )t)->;

I I. I ;
(t -> 0),

253

(16)

etc. If we define <pep; 0):= F(p), then <pep; t) is continuous on the region

u~O, v~O, w~ 0, u+ Ii + w = I, O~t~1. (17)

Function <pC p; t) represents a family of surfaces with a single parameter
t E [0, 1]. Especially we have mentioned that the surface patch
Am<p(p; I/(m+n)) coincides with the Bezier net EmJ(p) at all its vertices.

The investigation of convergence of EmJ( p) is now shifted to that of
).m<P(P; I/(m + n)). The second problem is easier than the first as <pep; t)
has an analytical expression on T, while EmJ( p), being a piecewise linear
function, does not. By the mean value theorem of univariate functions we
know that

<p(p;t')-<p(p;t)=D(It'-tl), t'->t

in the region (17). In particular we have

<p (p; m ~ 11) - F(p) = <p (p; m ~ n) - <pep; 0) = D (~).

Since )'m = 1+ D( 11m), we still have

as m -> x.

( 18)

We have shown that the sequence of surfaces )'m<P(P; I/(m + n)) converges
uniformly to the B-B patch BnU; p) with the rate D( 11m) as m -> 00. Now
we have to estimate the difference between J.m<p( p; I/(m + n)) and the
corresponding Bczier net EmJ( p).
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Take a typical upward subtriangle with vertices

(
i+l j k)------
m+n' m+n' m+n '

(
i j+l k)------

m+n' m+n' m+n ' (
i j k+l)------

m+n' m+n' m+n '

in which i+ j+k=m+n-l (see Fig. 3).

Let P be any point inside the subtriangle and P has the barycentric coor­
dinates p., jJ., Y) with respect to the subtriangle. Hence the barycentric coor­
dinates (u, v, w) with respect to the domain triangle T will be

(
i+;. j+jJ. k+Y)--,--,-- .
m+n m+n m+n

Being linear on the subtriangle, Emj( p) is a linear convex combination
of its values at three vertices of the subtriangle; more precisely,

which becomes by (8)

m _ n! m! . [(i+ l)(j)(k)E j(p)- ( + )1 L }",. fl. y ). u,
n m':x-t p+i'~n IX p I'

( i i.!..!.. k)
m +n' m,.n J 'iil+'n ( t j 1<+ 1 )

mrn'm+n'm+n

FIG. 3. A typical upward subtriangle.
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On the other hand, by (14) we have

, ( 1). (i+;. j+J1 k+v 1)
Am({J p;-- =Am({J --,--,--;--

m+n m+n m+n m+n m+n

255

= ml n! L f ,,(i + A)(j + J1)(k + V), (20)
(m + n )! , • Ii + " ~ n " 1i,,:J. f! i'

Define

By Taylor expansion we obtain

ljJ(j., fl, v) -ljJ(l, 0, 0) = (). - 1) ~~ U*, fl*, v*)
C/.

0fl . cljJ .+ J1-::- (/.*, fl*, v*) + v -;;- (/.*, J1*, v*),
Gfl ev

where (A *, fl*, v*) is some point in T. It is clear that

Since

~. (i+;')=~'il U+i)(A+i~l):"(A+i-Ct+l),
0 .... Ct Ct'r=() ).+/-!

similar estimation shows that

I~. (i + ;')1 ~ (Ct + i)
c.... Ct ('J. - 1

and then

Similar inequalities hold for !cljJjofll and IcljJjovl. Therefore
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= jljJ()" Ii, V) -ljJ(l, 0, 0)1

~ I~il + I~~I + I~~I

~G~~)C;P)C;/)

+c:a)(~~~)c;y)+c:a)c;p)G~n·
Hence by (10)

Ia+ Ij~/~n fx.p.1 [C: )')(1; Ii)C; V) - c: 1)(~)(~)JI

~311fll (m:~nl-l)

in which

ilfll := max{ Ifx,p)::X +P+ y = n}

and (11) has been used. Finally

I ( 1) "I m!n! (m+2n-l) (1);'mCfJ P;m+n -Emf(p) ~(m+n)!31Ifll n-I =0 m'

(21 )

(22)(m --+ ex:,).

The same estimate is valid for P lying on the downward subtriangies of
Sm+n(T). Combining (18) and (21) we get

F(p) - E"'J(p) = 0 (~)

This completes the proof of Theorem I.

4. HIGHER DIMENSION CASF..5

For P E IW and any s + 1 affinely independent points T; E IRs, i = 0, I, ..., S,

there are s + 1 real numbers Ao, AI, ..., As uniquely determined by de Boor
[1]

S

P= I )'I T;
ie.O
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(J.o, AI, ..., i.,.) are called the barycentric coordinates of P with respect to
the s-simplex T spanned by T;, i = 0, 1, ..., s. We write i. = (i.o, i' l , •.• , i. s )'

For a set i of s+ 1 nonnegative integers io, iI' ..., in we define

i:= (io, iI' ..., iJ,

Iii :=io+i l + ... +i"

'1-"" .,
I. -10.11' "'1,\"

With any set of scalars f:= {i; I Iii = n}, we define the Bernstein-Bezier
polynomial on the simplex T by

Bn(f; i.):= L j; ~: i.\
';1 - n I.

(23)

in which I is called the set of Bezier ordinates for B"(f; i.). The degree
raising technique is the same. It is easy to show that

where

m! n! (i)
e'jj= ( + )' L. I; . ,

m n. lil,"n 1

(24)

and Iii =m+n. Formula (24) generalizes (8). For .1'>2, it has been right­
fully stressed and detailed by Dahmen and Micchelli [2] that, since there
are several equally reasonable subdivisions of the simplex T~ the Bezier nets
J(i.) could not be uniquely determined. Similar to (14), we define

for t > 0, where

(. I)' ••_, n M
q;(/.,t).-n.t 1;~nII i (25)
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We can show easily that the function

(m+nt <P(k_l_)
(m+l)(m+2)···(m+n) 'm+n

interpolates to Em;; at ij(m+n) in which Iii =m+n and that

(m +nt <P (A; _,_1_) -Bn(f; A) = 0(~).
(m+l)(m+2)···(m+n) m+n m

In a word, the results in previous sections of our paper can be extended in
an obvious manner. Therefore we arrive at the extension of (20),

in which EmJ(A) denotes any reasonable piecewise linear interpolant to the
data points

( _i 'Em;;)
m+n' I'

Iii =n+m.
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