Convergence of Bézier Triangular Nets and a Theorem of Pólya

G. Chang* and J. Hoschek
Department of Mathematics, Technische Hochschule Darmstadt, 6100 Darmstadt, West Germany
Communicated by Charles K. Chui
Received June 16, 1987

This paper is concerned with Bernstein Bézier triangular patches and their Bézier nets. By degree raising, a sequence of Bezier nets is obtained. It is known that the sequence converges uniformly to the Bernstcin Bézier triangular patch determined by those nets. A new proof of the convergence, which is more geometric and constructive, is presented. Connections of convergence and a theorem due to Polya are revealed. Extensions to higher dimensional cases are also mentioned. © 1989 Academic Press, Inc.

1. Introduction

Let T be a given triangle. Each point P in T has barycentric coordinates (u, v, w) with respect to T. The triple (u, v, w) satisfies the conditions

$$
\begin{gather*}
u \geqslant 0, \quad v \geqslant 0, \quad w \geqslant 0, \\
u+v+w=1 . \tag{1}
\end{gather*}
$$

We identify P and its barycentric coordinates by writing $P=(u, v, w)$. Let n be any positive integer.

The subdivision of T into n^{2} congruent triangles with vertices at ($i / n, j / n$, k / n), in which $i+j+k=n$, denoted by $S_{n}(T)$, is called the nth subdivision of T. The points $(i / n, j / n, k / n), i+j+k=n$, are called nodes of $S_{n}(T)$. $S_{4}(T)$ is illustrated in Fig. 1.

Given is a set f of $(n+1)(n+2) / 2$ real numbers, i.e., $f:=\left\{f_{\text {f.j.k }} \dagger i+\right.$ $j+k=n\}$, and the polynomial

$$
\begin{equation*}
B^{n}(f ; p):=\sum_{i+j+k=n} f_{i, j k} \frac{n!}{i!j!k!} u^{i} v^{j} w^{k} \tag{2}
\end{equation*}
$$

[^0]

Fig. 1. $\quad S_{4}(T)$ with its nodes.
is defined as the Bernstein-Bézier (B-B) polynomial of f over the triangle $T . f_{i, j, k}(i+j+k=n)$ are called the Bézier ordinates of $B^{n}(f ; p)$ while $(i / n$, $j / n, k / n ; f_{i, j, k}$) are called its Bézier points. The point set $\left(P ; B^{n}(f ; p)\right)$ with $p \in T$ forms a surface patch over triangle T. We simply call polynomial (2) the B-B triangular patch with domain triangle T. The piecewise linear function $\hat{f}(p)$ which is linear on each subtriangle of $S_{n}(T)$ and interpolates to $f_{i, j, k}$ at ($i / n, j / n, k / n$), is said to be the Bézier net of patch (2). Figure 2 illustrates a Bézier net and the corresponding patch (with $n=3$).

It is known [3] that if we set

$$
\begin{equation*}
E f_{i, j, k}:=\frac{1}{n+1}\left(i f_{i-1, j, k}+j f_{i, j-1, k}+k f_{i, j, k \cdots 1}\right) \tag{3}
\end{equation*}
$$

where $i+j+k=n+1$, and write

$$
E f:=\left\{E f_{i, j, k} \mid i+j+k=n\right\},
$$

Fig. 2. Bézier net and the corresponding patch ($n=3$).
then we have

$$
B^{n}(f ; p)=B^{n+1}(E f ; p)
$$

This means that it is always possible to write $B^{n}(f ; p)$ as a B-B polynomial of degree $n+1$. The technique just mentioned is called degree raising. The Bézier net associated with $E f$ is denoted by $E \hat{f}(p)$ which is linear on each subtriangle of $S_{n+1}(T)$ and interpolates $E f_{i, j, k}$ at $(i /(n+1), j /(n+1)$. $k /(n+1))$.

If one repeats the process of degree raising, a sequence of Bézier nets $\hat{f}(p), E \hat{f}(p), E^{2} \hat{f}(p), \ldots$, will be obtained. It has been proved that

Theorem 1 [3]. We have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} E^{m} \hat{f}(p)=B^{n}(f ; p) \tag{4}
\end{equation*}
$$

uniformly on T.
Recently we found that Theorem 1 has a very close connection with a famous theorem, which appeared in the carly stage of this century [6], in the algebraic theory of polynomials in several variables. For historical remarks, see [5]. To present Pólya's theorem we need some definitions. A real form is a homogeneous polynomial $F\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, with real coefficients, in m variables. A form is said to be strictly positive, in a certain region of the variables, if $F>0$ for all points in that region.

Thforem 2 (Pólya). If the form $F\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is strictly positive in the region

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{1} \geqslant 0, \quad x_{2} \geqslant 0, \ldots, x_{m} \geqslant 0
$$

and

$$
x_{1}+x_{2}+\cdots+x_{m}>0
$$

then F may be expressed as

$$
\begin{equation*}
F=\frac{G}{H}, \tag{5}
\end{equation*}
$$

where G and H are forms with positive coefficients. In particular, we may suppose that

$$
H=\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{p}
$$

for a suitable natural number p.

In the present paper, we first show that Theorem 2 can be derived from Theorem 1, and then point out that Pólya's technique for the proof of his theorem, with further modifications, in turn provides a proof for Theorem 1 which is more geometric and constructive than existing ones.

2. Proof of Theorem

For simplicity of writing we suppose $m=3$. No new point of principle arises for general m.

A form F in three variables u, v, w can be expressed by

$$
\begin{equation*}
F(u, v, w)=\sum_{\alpha+\beta+\gamma=n} f_{\alpha, \beta, \gamma} \frac{n!}{\alpha!\beta!\gamma!} u^{\alpha} v^{\beta} w^{\gamma} \tag{6}
\end{equation*}
$$

in which u, v, w are independent. If $F>0$ in the region $u \geqslant 0, v \geqslant 0, w \geqslant 0$ and $u+v+w>0$, then F has a positive minimum, say τ, in the region $u \geqslant 0, v \geqslant 0, w \geqslant 0$ and $u+v+w=1$. In this case (6) becomes a B-B polynomial on the triangle T.

An elementary manipulation brings the following identity

$$
\begin{align*}
(u+v+w)^{m} F= & \frac{m!n!}{(m+n)!} \sum_{a+b+c=m+n} \sum_{i+j+k=n} f_{i, j, k} \\
& \times\binom{ a}{i}\binom{b}{j}\binom{c}{k} \frac{(a+b+c)!}{a!b!c!} u^{a} v^{b} w^{c} \tag{7}
\end{align*}
$$

For a proof, see $[5,8]$. If $(u, v, w) \in T$, i.e., $u+v+w=1$, then (7) can be viewed as the m th degree raising of the B-B polynomial $B^{n}(f ; p)$. Hence we have

$$
\begin{equation*}
E^{m} f_{i, j, k}=\frac{m!n!}{(m+n)!} \sum_{\alpha+\beta+\gamma=n} f_{\alpha, \beta, \gamma}\binom{i}{\alpha}\binom{j}{\beta}\binom{k}{\gamma} \tag{8}
\end{equation*}
$$

in which $i+j+k=m+n$.
By Farin's theorem, the inequality

$$
E^{m} \hat{f}(p) \geqslant \frac{\tau}{2}>0
$$

holds for all P in T and for sufficiently large m. Particularly,

$$
\begin{equation*}
E^{m} f_{i, j, k}=E^{m} \hat{f}\left(\frac{i}{m+n}, \frac{j}{m+n}, \frac{k}{m+n}\right)>0 \tag{9}
\end{equation*}
$$

for $i+j+k=m+n$. We denote the form in the right-hand side of (7) by G_{m}. Equation (9) shows that all coefficients of G_{m} are positive for sufficiently large m. Identity (7) gives

$$
F(u, v, w)=\frac{G_{m}(u, v, w)}{(u+v+w)^{m}}
$$

which is the desired representation for sufficiently large m.
The strict positivity of B-B polynomials was characterized by Zhou [8]. Obviously he was not aware of Theorem 2.

3. An Alternate Proof of Theorem 1

There are several proofs for the theorem. The original proof [3] is very short but some sophisticated results by Stancu are involved. The proof given by Zhou ([8]; see also [4]) is relatively elementary but it does not provide a proof for the uniform convergence. For other proofs the reader is referred to [1,7] in which the structure of Bézier nets has been carefully studied.

We define for real x and nonnegative i the usual binomial coefficient $\binom{x}{i}$ as

$$
\begin{aligned}
& \binom{x}{0}=1 \\
& \binom{x}{i}=\frac{x(x-1) \cdots(x-i+1)}{i!}, \quad i=1,2,3, \ldots
\end{aligned}
$$

Consider the following polynomial of degree n :

$$
\begin{equation*}
L_{n}(f ; p)=\sum_{x+\beta+\gamma=n} f_{x, \beta, \ddot{ }}\binom{n u}{\alpha}\binom{n v}{\beta}\binom{n w}{\gamma} . \tag{10}
\end{equation*}
$$

It is easy to verify that

$$
L_{n}\left(f ; \frac{i}{n}, \frac{j}{n}, \frac{k}{n}\right)=f_{i, j, k}, \quad i+j+k=n
$$

This means that (10) is the Lagrange interpolation to $\hat{f}(p)$ at all nodes of $S_{n}(T)$.

In particular, if $f_{x, \beta, \gamma}=1$ for all $\alpha+\beta+\gamma=n$, from (10) we have the following identity,

$$
\sum_{\alpha+\beta+\gamma=n}\binom{n u}{x}\binom{n v}{\beta}\binom{n w}{\gamma}=1
$$

for $u+v+w=1$ and $n=1,2,3, \ldots$. In general, we have

$$
\begin{equation*}
\sum_{\alpha+\beta+i=n}\binom{a}{\alpha}\binom{b}{\beta}\binom{c}{\gamma}=\binom{a+b+c}{n} \tag{11}
\end{equation*}
$$

The Lagrange interpolation to $E^{m} \hat{f}(p)$ at all nodes of $S_{m+n}(T)$, by (10) and (8), is

$$
\begin{equation*}
\frac{m!n!}{(m+n)!} \sum_{i+j+k=n} f_{i, j, k} \sum_{\alpha+\beta+\gamma=m+n}\binom{\alpha}{i}\binom{\beta}{j}\binom{\gamma}{k}\binom{A}{\alpha}\binom{B}{\beta}\binom{C}{\gamma} \tag{12}
\end{equation*}
$$

in which $A:=(m+n) u, B:=(m+n) v, C:=(m+n) w$. It is clear that

$$
\begin{gathered}
\binom{\alpha}{i}\binom{A}{\alpha}=\binom{A}{i}\binom{A-i}{\alpha-i}, \quad\binom{\beta}{j}\binom{B}{\beta}=\binom{B}{j}\binom{B-j}{\beta-j} \\
\binom{\gamma}{k}\binom{C}{\gamma}=\binom{C}{k}\binom{C-k}{\gamma-k}
\end{gathered}
$$

and by (11) that

$$
\sum_{\alpha+\beta+y=m+n}\binom{A-i}{x-i}\binom{B-j}{\beta-j}\binom{C-k}{\gamma-k}=1
$$

as

$$
A-i+B-j+C-k=(A+B+C)-(i+j+k)=m+n-n=m
$$

and

$$
\alpha-i+\beta-j+\gamma-k=m+n-n=m
$$

Hence (12) becomcs

$$
\begin{equation*}
\frac{m!n!}{(m+n)!} \sum_{i+j+k=n} f_{i, j, k}\binom{(m+n) u}{i}\binom{(m+n) v}{j}\binom{(m+n) w}{k} \tag{13}
\end{equation*}
$$

Define

$$
\begin{equation*}
\varphi(u, v, w ; t):=n!t^{n} \sum_{i+j+k=n} f_{i, j, k}\binom{u t^{1}}{i}\binom{v t^{-1}}{j}\binom{w t^{-t}}{k}, \quad 0 \leqslant t \leqslant 1 . \tag{14}
\end{equation*}
$$

We can verify that (13) is equal to

$$
\begin{equation*}
\lambda_{m} \varphi\left(u, v, w ; \frac{1}{m+n}\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\lambda}_{m}:=\frac{(m+n)^{n}}{(m+1)(m+2) \cdots(m+n)} \tag{16}
\end{equation*}
$$

$m=1,2,3, \ldots$ It is obvious that $\lim _{t \rightarrow 0} \varphi(p ; t)=F(p)$, as

$$
t^{i}\binom{u t^{1}}{i}=\frac{u(u-t)(u-2 t) \cdots(u-(i-1) t)}{i!} \rightarrow \frac{u^{i}}{i!} \quad(t \rightarrow 0)
$$

etc. If we define $\varphi(p ; 0):=F(p)$, then $\varphi(p ; t)$ is continuous on the region

$$
\begin{equation*}
u \geqslant 0, \quad v \geqslant 0, \quad w \geqslant 0, u+v+w=1, \quad 0 \leqslant t \leqslant 1 \tag{17}
\end{equation*}
$$

Function $\varphi(p ; t)$ represents a family of surfaces with a single parameter $t \in[0,1]$. Especially we have mentioned that the surface patch $\dot{\lambda}_{m} \varphi(p ; 1 /(m+n))$ coincides with the Bézier net $E^{m} \hat{f}(p)$ at all its vertices.

The investigation of convergence of $E^{m} \hat{f}(p)$ is now shifted to that of $\lambda_{m} \varphi(p ; 1 /(m+n))$. The second problem is casier than the first as $\varphi(p ; t)$ has an analytical expression on T, while $E^{m} \hat{f}(p)$, being a piecewise linear function, does not. By the mean value theorem of univariate functions we know that

$$
\varphi\left(p ; t^{\prime}\right)-\varphi(p ; t)=O\left(\left|t^{\prime}-t\right|\right), \quad t^{\prime} \rightarrow t
$$

in the region (17). In particular we have

$$
\varphi\left(p ; \frac{1}{m+n}\right)-F(p)=\varphi\left(p ; \frac{1}{m+n}\right)-\varphi(p ; 0)=O\left(\frac{1}{m}\right), \quad \text { as } \quad m \rightarrow \infty
$$

Since $\lambda_{m}=1+O(1 / m)$, we still have

$$
\begin{equation*}
\lambda_{m} \varphi\left(p ; \frac{1}{m+n}\right)-F(p)=O\left(\frac{1}{m}\right) . \tag{18}
\end{equation*}
$$

We have shown that the sequence of surfaces $\lambda_{m} \varphi(p ; 1 /(m+n))$ converges uniformly to the B-B patch $B^{n}(f ; p)$ with the rate $O(1 / m)$ as $m \rightarrow \infty$. Now we have to estimate the difference between $\lambda_{m} \varphi(p ; 1 /(m+n))$ and the corresponding Bézier net $E^{m} \hat{f}(p)$.

Take a typical upward subtriangle with vertices

$$
\begin{gathered}
\left(\frac{i+1}{m+n}, \frac{j}{m+n}, \frac{k}{m+n}\right) \\
\left(\frac{i}{m+n}, \frac{j+1}{m+n}, \frac{k}{m+n}\right), \quad\left(\frac{i}{m+n}, \frac{j}{m+n}, \frac{k+1}{m+n}\right)
\end{gathered}
$$

in which $i+j+k=m+n-1$ (see Fig. 3).
Let P be any point inside the subtriangle and P has the barycentric coordinates (λ, μ, v) with respect to the subtriangle. Hence the barycentric coordinates (u, v, w) with respect to the domain triangle T will be

$$
\left(\frac{i+\lambda}{m+n}, \frac{j+\mu}{m+n}, \frac{k+v}{m+n}\right)
$$

Being linear on the subtriangle, $E^{m} \hat{f}(p)$ is a linear convex combination of its values at three vertices of the subtriangle; more precisely,

$$
E^{m} \hat{f}(p)=\lambda E^{m} f_{i+1, j, k}+\mu E^{m} f_{i, j+1, k}+v E^{m} f_{i, j, k+1}
$$

which becomes by (8)

$$
\begin{align*}
E^{m} \hat{f}(p)= & \frac{n!m!}{(n+m)!} \sum_{\alpha+\beta+\gamma=n} f_{\alpha, \beta, \gamma}\left[\lambda\binom{i+1}{\alpha}\binom{j}{\beta}\binom{k}{\gamma}\right. \\
& \left.+\mu\binom{i}{\alpha}\binom{j+1}{\beta}\binom{k}{\gamma}+v\binom{i}{\alpha}\binom{j}{\beta}\binom{k+1}{\gamma}\right] . \tag{19}
\end{align*}
$$

Fig. 3. A typical upward subtriangle.

On the other hand, by (14) we have

$$
\begin{align*}
\lambda_{m} \varphi\left(p ; \frac{1}{m+n}\right) & =\hat{\lambda}_{m} \varphi\left(\frac{i+\lambda}{m+n}, \frac{j+\mu}{m+n}, \frac{k+v}{m+n} ; \frac{1}{m+n}\right) \\
& =\frac{m!n!}{(m+n)!} \sum_{\alpha+\beta+\gamma=n} f_{\alpha, \beta, \gamma}\binom{i+i}{x}\binom{j+\mu}{\beta}\binom{k+v}{\gamma} . \tag{20}
\end{align*}
$$

Definc

$$
\psi(\hat{\lambda}, \mu, v):=\binom{i+\lambda}{\alpha}\binom{j+\mu}{\beta}\binom{k+v}{\gamma}
$$

By Taylor expansion we obtain

$$
\begin{aligned}
\psi(\hat{\lambda}, \mu, v)-\psi(1,0,0)= & (\lambda-1) \frac{\partial \psi}{\partial \lambda}\left(\hat{\lambda}^{*}, \mu^{*}, v^{*}\right) \\
& +\mu \frac{\partial \mu}{\partial \mu}\left(i^{*}, \mu^{*}, v^{*}\right)+v \frac{\partial \psi}{\partial v}\left(i^{*}, \mu^{*}, v^{*}\right)
\end{aligned}
$$

where $\left(\lambda^{*}, \mu^{*}, v^{*}\right)$ is some point in T. It is clear that

$$
\left|\binom{i+i}{\alpha}\right| \leqslant\binom{ i+\alpha}{\alpha}, \quad\left|\binom{j+\mu}{\beta}\right| \leqslant\binom{ j+\beta}{\beta}, \quad\left|\binom{k+v}{\gamma}\right| \leqslant\binom{ k+\gamma}{\gamma}
$$

Since

$$
\frac{\partial}{\partial \hat{\lambda}}\binom{i+\lambda}{\alpha}=\frac{1}{\alpha!} \sum_{\tau=0}^{\alpha-1} \frac{(\hat{\lambda}+i)(\lambda+i-1) \cdots(\lambda+i-\alpha+1)}{\lambda+i-\tau}
$$

similar estimation shows that

$$
\left|\frac{\partial}{\partial \lambda}\binom{i+i}{\alpha}\right| \leqslant\binom{\alpha+i}{\alpha-1}
$$

and then

$$
\left|\frac{\hat{\partial} \psi}{\partial \lambda}\right|=\left|\frac{\partial}{\partial \lambda}\binom{i+\alpha}{\alpha}\right|\left|\binom{j+\mu}{\beta}\right|\left|\binom{k+v}{\gamma}\right| \leqslant\binom{ i+\alpha}{\alpha-1}\binom{j+\beta}{\beta}\binom{k+\gamma}{\gamma} .
$$

Similar inequalities hold for $|\hat{\partial} \psi / \partial \mu|$ and $|\partial \psi / \partial \nu|$. Therefore

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{c}
i+i \\
\alpha
\end{array}\right.\right) \left.\binom{j+\mu}{\beta}\binom{k+v}{\gamma}-\binom{i+1}{\alpha}\binom{j}{\beta}\binom{k}{\gamma} \right\rvert\, \\
& \quad=|\psi(\lambda, \mu, v)-\psi(1,0,0)| \\
& \quad \leqslant\left|\frac{\partial \psi}{\partial \lambda}\right|+\left|\frac{\partial \psi}{\partial \mu}\right|+\left|\frac{\partial \psi}{\partial v}\right| \\
& \quad \leqslant\binom{ i+\alpha}{\alpha-1}\binom{j+\beta}{\beta}\binom{k+\gamma}{\gamma} \\
& \quad+\binom{i+\alpha}{\alpha}\binom{j+\beta}{\beta-1}\binom{k+\gamma}{\gamma}+\binom{i+\alpha}{\alpha}\binom{j+\beta}{\beta}\binom{k+\gamma}{\gamma-1} .
\end{aligned}
$$

Hence by (10)

$$
\begin{aligned}
& \sum_{\alpha+\beta+\gamma=n} f_{\alpha, \beta, \gamma}\left[\binom{i+\lambda}{\alpha}\binom{j+\mu}{\beta}\binom{k+v}{\gamma}-\binom{i+1}{\alpha}\binom{j}{\beta}\binom{k}{\gamma}\right] \\
& \quad \leqslant 3\|f\|\binom{m+2 n-1}{n-1}
\end{aligned}
$$

in which

$$
\|f\|:=\max \left\{\left|f_{\alpha, \beta, \gamma}\right|: x+\beta+\gamma=n\right\}
$$

and (11) has been used. Finally

$$
\begin{equation*}
\left|\lambda_{m} \varphi\left(p ; \frac{1}{m+n}\right)-E^{m} \hat{f}(p)\right| \leqslant \frac{m!n!}{(m+n)!} 3\|f\|\binom{m+2 n-1}{n-1}=O\left(\frac{1}{m}\right) \tag{21}
\end{equation*}
$$

The same estimate is valid for P lying on the downward subtriangles of $S_{m+n}(T)$. Combining (18) and (21) we get

$$
\begin{equation*}
F(p)-E^{m} \hat{f}(p)=O\left(\frac{1}{m}\right) \quad(m \rightarrow \infty) \tag{22}
\end{equation*}
$$

This completes the proof of Theorem 1.

4. Higher Dimension Cases

For $P \in \mathbb{R}^{s}$ and any $s+1$ affinely independent points $T_{i} \in \mathbb{R}^{s}, i=0,1, \ldots, s$, there are $s+1$ real numbers $\lambda_{0}, \lambda_{1}, \ldots, \hat{\lambda}_{s}$ uniquely determined by de Boor [1]

$$
P=\sum_{i=0}^{s} \lambda_{i} T_{i}
$$

and

$$
\sum_{i=0}^{s} \dot{\lambda}_{i}=1
$$

$\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s}\right)$ are called the barycentric coordinates of P with respect to the s-simplex T spanned by $T_{i}, i=0,1, \ldots, s$. We write $\lambda=\left(i_{0}, i_{1}, \ldots, i_{s}\right)$. For a set i of $s+1$ nonnegative integers $i_{0}, i_{1}, \ldots, i_{s}$, we define

$$
\begin{aligned}
i & :=\left(i_{0}, i_{1}, \ldots, i_{s}\right), \\
|i| & :=i_{0}+i_{1}+\cdots+i_{s}, \\
i! & =i_{0}!i_{1}!\cdots i_{s}! \\
\hat{\lambda}^{i} & :=\dot{\lambda}_{0}^{i_{0}} \lambda_{1}^{i_{1}} \cdots \lambda_{s}^{i_{s}} .
\end{aligned}
$$

With any set of scalars $f:=\left\{f_{i}| | i \mid=n\right\}$, we define the Bernstein-Bézier polynomial on the simplex T by

$$
\begin{equation*}
B^{n}(f ; \hat{\lambda}):=\sum_{i l-n} f_{i} \frac{n!}{i!} \hat{\lambda}^{i}, \tag{23}
\end{equation*}
$$

in which f is called the set of Bézier ordinates for $B^{n}(f ; i)$. The degree raising technique is the same. It is easy to show that

$$
\begin{equation*}
E^{m} f_{j}=\frac{m!n!}{(m+n)!} \sum_{|i| \ldots n} f_{i}\binom{j}{i} \tag{24}
\end{equation*}
$$

where

$$
\binom{j}{i}:=\binom{j_{0}}{i_{0}}\binom{j_{1}}{i_{1}} \ldots\binom{j_{s}}{i_{s}}
$$

and $|j|=m+n$. Formula (24) generalizes (8). For $s>2$, it has been rightfully stressed and detailed by Dahmen and Micchelli [2] that, since there are several equally reasonable subdivisions of the simplex T, the Bézier nets $\hat{f}(i)$ could not be uniquely determined. Similar to (14), we define

$$
\begin{equation*}
\varphi(\lambda ; t):=n!t^{n} \sum_{\mid i:=n} f_{i}\binom{\lambda t}{i} \tag{25}
\end{equation*}
$$

for $t>0$, where

$$
\binom{\lambda_{1} t^{1}}{i}:=\binom{\hat{\lambda}_{0} t}{i_{0}}\binom{\lambda_{1} t^{-1}}{i_{1}} \cdots\binom{\lambda_{s} t^{-i}}{i_{s}}
$$

We can show easily that the function

$$
\frac{(m+n)^{n}}{(m+1)(m+2) \cdots(m+n)} \varphi\left(\lambda ; \frac{1}{m+n}\right)
$$

interpolates to $E^{m} f_{i}$ at $i /(m+n)$ in which $|i|=m+n$ and that

$$
\frac{(m+n)^{n}}{(m+1)(m+2) \cdots(m+n)} \varphi\left(\lambda ; \frac{1}{m+n}\right)-B^{n}(f ; \lambda)=O\left(\frac{1}{m}\right) .
$$

In a word, the results in previous sections of our paper can be extended in an obvious manner. Therefore we arrive at the extension of (20),

$$
B^{n}(f ; \lambda)-E^{m} \hat{f}(\lambda)=O\left(\frac{1}{m}\right)
$$

in which $E^{m} \hat{f}(\lambda)$ denotes any reasonable piecewise linear interpolant to the data points

$$
\left(\frac{i}{m+n} ; E^{m} f_{i}\right), \quad|i|=n+m
$$

References

1. C. De Boor, "B-form Basics," MRC Technical Summary Report No. 2957, 1986.
2. W. Dahmen and C. Micchelli, Convexity of multivariate Bernstein polynomials and box spline surfaces, preprint No. 735, Universität Bonn (1985).
3. G. Farin, "Subsplines über Dreiecken," Dissertation, Braunschweig, FRG, 1979.
4. G. Farin, Triangular Bernstein-Bézier patches, J. CAGD 3 (1986), 83-127.
5. G. H. Hardy, J. E. Littlewood, and G. Pólya, "Inequalities," Cambridge Univ. Press, London/New York, 1952.
6. G. Pólya, Úber positive Darstellung von Polynomen, Vierteljahresschr. Naturforsch. Ges. Zuerich 73 (1928), 141-145.
7. K. Zhao and J. Sun, Dual bases of multivariate B-B polynomials, preprint, submitted for publication.
8. J. ZHou, The positivity and convexity for Bernstein polynomials over triangles, Math. Numer. Sinica 8 (1986), 185-190. [in Chinese]

[^0]: * Permanent address: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, P.R. China.

